

R&D ACTIVITIES AT GEECO

by
Dr. SURESH M
Senior DGM, R&D

CONTENTS

- Introduction
- R&D Facilities
- Heating Element Optimization
- Sealing Improvements
- RPM Effect on APH Performance
- R&D Activities in ESP
- Ongoing & Upcoming Activities

INTRODUCTION

- R&D inception in the year 2014
- About 2500 sq. ft. of dedicated space for inhouse R&D
- Inhouse custom–developed test facilities
- Continuous efforts for improved and sustainable solutions to meet customer requirements
- In-depth product knowledge & expertise
- Optimize operating conditions to significantly improve performance & efficiency of products with cost saving
- Edge over competitors

DSIR RECOGNITION

- Department of Scientific & Industrial
 Research (DSIR) only government body
 that grants recognition to inhouse R&D units
 in industrial sector
- Only 1900 recognized R&D units in India as on 31 December 2016
- Prestigious certification that benchmarks & acknowledges R&D on an international level
- **■**DSIR Recognition since 2019

दुरमाष/TEL : 26962819, 2656737. (EPABX) : 26565694, 2656213 : 26565687, 2656214 : 26562134, 2656214 अधिकार

भारत सरकार

विज्ञान और प्रौद्योगिकी मंत्रालय वैज्ञानिक और औद्योगिक अनुसंधान विभाग टेक्नोलॉजी भवन, नया महरौली मार्ग,

नई दिल्ली - 110016

GOVERNMENT OF INDIA
MINISTRY OF SCIENCE AND TECHNOLOGY
Department of Scientific and Industrial Research
Technology Bhavan, New Mehrauli Road,
New Delhi - 110016

Dated: 14th July, 2021

F. No. TU/IV-RD/4459/2021

- 1

M/s. Geeco Enercon Pvt. Ltd. No. D/C-6, SIDCO Industrial Estate, Thuvakudy, Trichy – 620 015 (Tamil Nadu)

Subject: RENEWAL OF RECOGNITION OF IN-HOUSE R&D UNIT(s)

Dear Sirs.

This has reference to your application for renewal of recognition of your in-House R&D unit(s) beyond 31-03-2021 by the Department of Scientific and Industrial Research.

- This is to inform you that it has been decided to accord renewal of recognition to the in-House R&D unit(s) of your firm at No. D/C-6, SIDCO Industrial Estate, Thuvakudy, Trichy (Tamil Nadu) upto 31.03.2024. Terms and conditions pertaining to this recognition are given overleaf.
- 3. Kindly acknowledge the receipt of this letter.

Yours faithfully

Scientist - 'F'

INHOUSE R&D FACILITIES

- Forced Convection Apparatus
- CFD & FEA Modeling
- GEECO's Air Preheater (GAPH) Program
- Seal Test Apparatus
- Immersion Corrosion Testing
- Humidity Chamber

FORCED CONVECTION APPARATUS

To evaluate the performance of heating elements

CFD MODELING

Flow & Heat Transfer Modeling of Heating Elements

FEA MODELING

Rotor Expansion & Turndown Modeling

GAPH – GEECO's AIR PREHEATER PROGRAM

- Inhouse developed program for selection & performance prediction of APHs
- Program validated by field experiments
- APH rotor discretized into cells along the height, radius & rotation directions

DISCRETIZATION OF AIR PREHEATER

GAPH PROGRAM

FEATURES

- Effect of Rotor RPM on FGET & Leakage
- Locate APH Areas where Metal Temperature < Acid Dew Point</p>
- Predict temperature gradient along height, radius & rotation directions
- Predict APH performance loss for non-uniform flows
- Predict Rotor Turndown based on Variable Rotor Expansion due to Thermal Gradient
- Corrections to Flue Gas Properties based on Fuel Fired
- Effect of Direction of Rotation Change for Trisector APHs

SEAL TEST APPARATUS

To evaluate the performance of seals

- Inhouse customized test setup
- Soft seals are multi-layered thin leaf metal sheets attached in addition to conventional seals that come in contact with the sector plate
- Various parameters are monitored:
 - → RPM controlled through VFD
 - ◆ Shaft torque & Motor Current
 - Leaf Material
 - Leaf geometry
 - Life of soft seals
- 8 sector plates are provided to accelerate the testing time

IMMERSION CORROSION TEST

To evaluate the corrosion rate of materials

HUMIDITY CHAMBER

To evaluate the performance of rust preventive oils

Heating Element Selection Factors

- Heat Recovery (Gas / Air Outlet Temperatures)
- Pressure Drop Across APH

Direct (Measurable)

- Fouling / Choking Potential
- Cleanability using Soot Blowers

Indirect (Non Measurable)

GOAL: Consistent Long Term Performance

Weightage for each factor depends on type of coal (ash), element layer (hot/intermediate/cold) & overall element height

8th International Seminar

OPEN PROFILE

CLOSED PROFILE

Hot End Layer Profile Selection

MERITS of GHT over FNC

- Equal thermal performance
- Lower pressure drop
- 6% higher heat transfer area
- Reduced plugging, fouling or choking
- Easy to clean under soot blowing operation
- Sustained performance
- Increased life
- Higher payback for money spent

GCP® GEECO's Good Cleanability Heating Element Profile

Recent times the quality of coal has worsened – high ash and sulphur content. Firing poor quality coal makes the layers of APH heating elements susceptible to fouling. Hence there is a need for an improved profile that satisfies the above criteria. GEECO's answer is the modified and improved "GCP" profile. The results are verified by CFD simulations.

MERITS of GCP over DU

- Lower pressure drop
- Reduced plugging, fouling or choking
- Easy to clean under soot blowing operation
- Sustained performance and increased life

GCIN® Advanced Heating Element Profile for Cold End

Recent times the quality of coal has worsened – high ash and sulphur content. Firing poor quality coal makes the layers of APH heating elements, especially cold end elements, susceptible to fouling. Hence there is a need for an improved profile that satisfies the above criteria. GEECO's answer is improved GCIN® profiles. The results are verified by CFD simulations and wind tunnel experiments.

MERITS of GCIN® over NF6

- Good heat transfer rate. About 2-3 °C reduction in gas out temperature.
- Fouling and choking characteristic similar to NF6
- Easy to clean under soot blowing operation
- Reduced element weight by ~2%

Fly Ash Erosion? Ans: SACRIFICING BASKET

Features

- Basket depth of 200 300 mm to cover erosion prone entry region
- **■** Higher thickness (0.8 mm) for longer life
- Closed profile for good heat recovery
- Tall hot end baskets can be split into 200-300mm as sacrificing & balance as hot end baskets
- Future element provision can be used

Benefits of Sacrificing Baskets

- Longer life due to higher thickness
- Protects tall baskets below from severe erosion
- Easy to replace & lower replacement cost
- Easy for off-line cleaning

SEALING IMPROVEMENTS

Typical Breakup of APH Leakage

Radial Leakage	- Hot & Cold Ends	50% + 14%
----------------	-------------------	-----------

Axial Leakage
11%

Post Seal Leakage
2%

Entrained or Indirect Leakage
23%

SEALING IMPROVEMENTS

- EZ-INTM Sector Plates
- GLRS® GEECO's Leakage Reduction System
- Machined T Bars
- HiFlexTM Seals
- TALCON® with Hi-Life Seals
- SDBS® Soft Touch Double Bypass Seals
- WEAREZISTTM Sector Plate

R&D ACTIVITIES IN ESP

- Study of collection efficiency with different combinations of emitting & collecting electrodes
- **■** Electrohydrodynamic (EHD) secondary flow modeling to identify optimum collecting electrode geometry
- New / improved emitting electrode geometry for increased corona discharge & migration velocity
- Optimize spacing of emitting & collecting electrodes

ONGOING & UPCOMING ACTIVITIES

- New Element Profiles
- Element Material Upgrade
- Optimize Profile Geometry for Better Performance
- Air Preheater Design Modifications
- Suitable Rust Preventive Oil for Longer Storage
- Soft Seal Improvement for Reliable Performance & Longer Life
- ESP Prototype Development & Numerical Modeling